Abstract

The high levels of X-ray flaring activity observed in young stars and protostars suggest correspondingly high levels of low-energy particle irradiation of their circumstellar disks, and hence of early solar system material like meteorites. We first briefly review the latest X-ray observational results obtained by Chandra and XMM-Newton on two ‘typical’ star-forming regions, Orion and ρ Ophiuchi. We then discuss a new ‘accretion–ejection–irradiation–transport’ model for young stars which, when scaled to the X-ray fluxes, accounts simultaneously for four extinct radioactivity ratios, in particular the purely spallogenic 10Be/ 9Be ratio, and the 26Al/ 27Al ratio. We point out the importance of the environment in which nearby star formation is taking place today, namely the Gould Belt, and the possible connection between Comptel detections of 26Al γ-ray line emission from these regions, and new constraints on the origin of the solar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.