Abstract

There is a massive and rapid death of donor myoblasts (<20% surviving) within hours after intramuscular injection in myoblast transfer therapy (MTT), due to host immune cells, especially natural killer (NK) cells. To investigate the role of host immune cells in the dramatic death of donor myoblasts, MTT experiments were performed in irradiated host mice. Cultured normal C57BL/10ScSn male donor myoblasts were injected into muscles of female C57BL/10ScSn-Dmdmdx host mice after one of three treatments: whole body irradiation (WBI) to eliminate all circulating leukocytes, WBI and bone marrow reconstitution (BMR), or local irradiation (or protection) of one limb. Similar experiments were performed in host mice after antibody depletion of NK cells. Numbers of male donor myoblasts were quantified using a Y-chromosome-specific (male) probe following total DNA extraction of injected muscles. WBI prior to MTT resulted in dramatically enhanced survival (approximately 80%) of donor myoblasts at 1 hour after MTT, supporting a central role for host inflammatory cells in the initial death of donor myoblasts seen in untreated host mice. BMR restored the massive and rapid loss (approximately 25% surviving) of donor myoblasts at 1 hour after MTT. Local pre-irradiation also resulted in increased donor myoblast numbers (approximately 35-40%) compared with untreated controls (approximately 10%) at 3 weeks after MTT. Preirradiation of host muscle with 10 Gy did not significantly stimulate proliferation of the injected donor myoblasts. Serum protein levels of TNFalpha, IL-1beta, IL-6 and IL-12 fluctuated following irradiation treatments. These combined results strongly reinforce a major role for host immune cells in the rapid death of injected cultured donor myoblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.