Abstract
Different pulp samples were irradiated by three energy sources: plasma, electron beaming, and γ radiation. The effect of increased exposure to irradiation was studied by multidetector gel permeation chromatography with fluorescence labeling of carbonyl groups to quantify changes of the cellulose. Whereas plasma treatment had no effect, for gamma and electron beam the degradation primarily affects the high molar mass area. Kinetic calculations based on DPw were performed. They show close-to-linear relations with slopes in the same order of magnitude, suggesting that wood-derived pulps degrade slower than pulps from annual plants. The rise in carbonyl group content is linear with increasing dose. In particular, in pulps from annual plants, most detected carbonyl structures originate from the new reducing end groups. Therefore, oxidative modification of cellulose molecules by means of radiation appears to be viable for pulps produced from wood. Here the increase in oxidized functionalities is partially disconnected from chain scission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.