Abstract

ABSTRACTWe developed a rate-theory-based model to investigate the nucleation and growth of interstitial loops and cavities during low-temperature in-reactor irradiation of uranium-molybdenum alloys. Consolidation of the dislocation structure takes into account the generation of forest dislocations and capture of interstitial dislocation loops. The theoretical description includes stress-induced glide of dislocation loops and accumulation of dislocations on cell walls. The loops accumulate and ultimately evolve into a low-energy cellular dislocation structure. Calculations indicate that nanometer-size bubbles are associated with the walls of the cellular dislocation structure. The accumulation of interstitial loops within the cells and of dislocations on the cell walls leads to increasing values for the rotation (misfit) of the cell wall into a subgrain boundary and a change in the lattice parameter as a function of dose. Subsequently, increasing values for the stored energy in the material are shown to be sufficient for the material to undergo recrystallization. Results of the calculations are compared with SEM photomicrographs of irradiated U- 10Mo, as well as with data from irradiated UO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.