Abstract

Abstract A study on grain-boundary segregation and embrittlement in terms of the Charpy ductile-to-brittle transition temperature (DBTT) has been performed for the neutron-irradiated A533B steels with typical contents of impurities of Japanese reactor pressure vessel ones. The neutron irradiation was conducted at 563 K to a fluence of 1.3× 1024n/m2 (E>1 MeV) using material testing reactors. The neutron irradiation induced the P and Ni segregation and the reduction in C in some cases at grain-boundaries. The increase in the P segregation at high fluence (>5×10 23n/m2, E>1 MeV) was less than 0.1 in monolayer coverage for the steels with the bulk content of P not exceeding 0.02 wt%. The hardening more strongly affected the DBTT shift than the P segregation for those steels. The reduction in segregated C that enhances the grain-boundary cohesion by neutron fluence is not large enough to cause the DBTT shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.