Abstract

Deliberately introducing defects by particle irradiation is an effective way to increase the flux pinning in high-critical-temperature superconductors, which is a requirement for technological applications of these materials. Proton irradiation generates a random distribution of point defects, which largely enhances the critical current in YBa2Cu3O7−x single crystals; but it is not effective in shifting the irreversibility line to higher magnetic fields. The aligned columnar defects created by high-energy heavy-ion irradiation generate even stronger vortex pinning, resulting in higher critical currents at high temperatures and fields and a large displacement of the irreversibility line to higher fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.