Abstract

Irradiation can be used both to enhance diffusion, that is, to increase the rate at which equilibrium is attained, as well as to induce nonequilibrium changes. The main factors influencing whether irradiation will drive a material toward or away from equilibrium are the initial specimen microstructure and geometry, the irradiation temperature, and the primary recoil spectrum. This paper summarizes known effects of irradiation temperature and primary recoil spectrum on mass transport during irradiation. In comparison to either electron or heavy-ion irradiation, it is concluded that relatively low-energy, light-ion bombardment at intermediate temperatures offers the greatest potential to enhance the rate at which equilibrium is attained. The greatest departures from equilibrium can be expected from irradiation with similar particles at very low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.