Abstract

Irradiation responses of binary W alloys were investigated systematically from the perspective of the binding energy of an alloying element with a W self-interstitial atom (W-SIA). Plates of W, W-0.3 at.% Cr, W-5 at.% Re, W-2.5 at.% Mo and W-5 at.% Ta alloys were irradiated at 1073 K with 6.4 MeV Fe ions to 0.26 dpa at the damage peak, where the binding energy of alloying element with W-SIA is in order of Cr > Re > Mo > Ta. The formation of vacancy-type defects (vacancies and vacancy clusters) was studied by using positron lifetime measurement. The precipitation of alloying elements was studied by using atom probe tomography (APT) and the hardness changes in the irradiated volumes were measured by the nanoindentation technique. The formation of vacancy-type defects was strongly suppressed by the addition of Cr and Re, while Ta and Mo had no noticeable suppression effect. The APT measurements showed fine Cr- and Re-rich precipitates in W-0.3 at.% Cr and W-5 at.% Re alloys, respectively, where the density of precipitates in the latter was clearly lower than that in the former. The distributions of Mo and Ta were uniform even after irradiation. Irradiation hardening was observed for all materials but that of W-5 at.% Re alloy was significantly smaller than the hardening of W, W-2.5 at.% Mo and W-5 at.% Ta alloys. These observations suggest that the irradiation hardening of W, W-2.5 at.% Mo, and W-5 at.% Ta alloys were mainly caused by vacancy-type defects. It was concluded that an alloying element with moderate binding energy with a W-SIA effectively suppresses vacancy formation without significantly enhanced precipitation and consequently mitigates irradiation hardening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call