Abstract
Figuring out the underlying relationship between the field emission (FE) properties and the ion irradiation induced structural change of carbon nanotubes (CNTs) is of great importance in developing high-performance field emitters. We report here the FE properties of Si and C ion irradiated CNTs with different irradiation doses. It is found that the FE performance of the ion irradiated CNTs ameliorates before and deteriorates after an irradiation-ion-species related dose. The improved FE properties are ascribed to the increased amount of defects, while the degraded FE performance is attributed to the great shape change of CNTs. These two structural changes are further characterized by a structural damage related parameter: dpa (displacement per atom), and the FE performance of the ion irradiated CNTs is surprisingly found to be mainly dependent on the dpa. The optimal dpa for FE of the ion irradiated CNTs is ∼0.60. We ascribe this to the low irradiation doses and the low substrate temperature that make the ion irradiation play a more important role in producing defects rather than element doping. Furthermore, the ion irradiated CNTs exhibit excellent FE stability, showing promising prospects in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.