Abstract

Abstract Irradiation creep was investigated in Type 316 stainless steel (316 SS) and US Fusion Program PCA using a tailored spectrum of the Oak Ridge Research Reactor in order to achieve a He/dpa value characteristic of a fusion reactor first wall. Pressurized tubes with stresses of 20 to 470 MPa were irradiated at temperatures of 330, 400, 500, and 600°C. It was found that irradiation creep was independent of temperature in this range and varied linearly with stress at low stresses, but the stress exponent increased to 1.3 and 1.8 for 316 SS and PCA, respectively, at higher stresses. Specimens of PCA irradiated in the ORR and having helium levels up to 200 appm experienced a 3 to 10 times higher creep rate than similar specimens irradiated in the FFTF and having helium levels below 20 appm. The higher creep rates are attributed to either a lower flux or the presence of helium. A mechanism involving interstitial helium-enhanced climb is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.