Abstract
SummaryRadiotherapy combined with immune checkpoint blockade has gradually revealed the superiority in the antitumor therapy; however, the contribution of host PD-L1 remains elusive. In this study, we found that the activation of CD8+ T cells was strikingly increased in both irradiated PD-L1-expressing primary tumor and distant non-irradiated syngeneic tumor in PD-L1-deficient mouse host, and thus enhanced radiation-induced antitumor abscopal effect (ATAE) by activating cGAS-STING pathway. Notably, the autophagy inhibitors distinctively promoted dsDNA aggregation in the cytoplasm and increased the release of cGAS-STING-regulated IFN-β from irradiated cells, which further activated bystander CD8+ T cells to release IFN-γ and contributed to ATAE. These findings revealed a signaling cascade loop that the cytokines released from irradiated tumor recruit CD8+ T cells that in turn act on the tumor cells with amplified immune responses in PD-L1-deficient host, indicating a potential sandwich therapy strategy of RT combined with PD-L1 blockage and autophagy inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.