Abstract
An austenitic stainless steel, 316F, irradiated in the High Flux Isotope Reactor to doses of about 8 to 33 dpa at 400° and 500°C was investigated. Electron beam (EB) welding and metal inert gas (MIG) welding techniques were used to make weldment specimens. Weldment specimens were made from their weld metal or weld joint (including heat affected zone) regions of the weldments. Base metal was also studied for comparison. Microstructures of these specimens were observed by TEM. Tensile tests were carried out at the nominal irradiation temperature in vacuum. Solution annealed 316F showed the large irradiation hardening at 400°C, while the change in yield stress observed at 500°C was not so large. Weldments specimens had the same temperature and dose dependence as the base metal. The differences between EB and MIG after irradiation were small, compared to the differences before irradiation, except for the slight less ductility of MIG weldments. The defect microstructures of weldments were the same as base metal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.