Abstract

Nickel-base alloys, 625DA and 625Plus have received renewed interest as potential structural materials in nuclear reactors to replace the austenitic stainless steels, which show high susceptibility of irradiation-assisted stress corrosion cracking (IASCC). We investigated the microstructural response of both alloys after 2 MeV protons irradiated to 5dpa at 360 °C in the Michigan Ion Beam Laboratory (MIBL). Transmission electron microscopy was performed on plan-viewed samples with a depth range 9–12 μm prepared by jet-polishing. Detailed analysis included changes in phases, dislocation loops, voids swelling, and radiation induced segregation (RIS). Nano-scaled irradiation-induced precipitates and dislocation loops were pervasive. Voids were absent in these alloys. RIS occurred at random high angle grain boundaries examined. A complete characterization of the irradiated microstructure is required to understand their mechanical and IASCC behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.