Abstract

The solar 0.5–8 A soft X-ray flux was monitored by the NOAA Geostationary Operational Environmental Satellites (GOES) from 1974 to the present, providing a continuous record over two solar activity cycles. Attempts have been made to determine a soft X-ray (SXR) background flux by subtracting out solar flares (using the daily lowest flux level). The SXR background flux represents the quiescent SXR flux from heated plasma in active regions, and reflects similar (intermediate-term) variability and periodicities (e.g. 155-day period) as the SXR or hard X-ray (HXR) flare rate, although it is determined in non-flaring time intervals. The SXR background flux peaks late in Solar Cycle 21 (2–3 years after the sunspot maximum), similar to the flare rate measured in SXR, HXR, or gamma rays, possibly due the increasing complexity of coronal magnetic structures in the decay phase of the solar cycle. The SXR background flux appears to be dominated by postflare emission from the dominant active regions, while the contributions from the quiet Sun are appreciable in the Solar Minimum only (A1-level). Comparisons with full-disk integrated images from YOHKOH suggest that the presence of coronal holes can decrease the quietest SXR irradiance level by an additional order of magnitude, but only in the rare case of absence of active regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call