Abstract

We modify an algorithm for retrieving the absorption (a) and backscattering (b(b)) coefficient profiles in natural waters by inverting profiles of downwelling and upwelling irradiance so as to include the presence of Raman scattering. For a given wavelength of interest, lambda, the light field at the appropriate Raman excitation wavelength lambda(e) is first inverted to obtain the Raman source function at lambda. Starting from estimates of the inherent optical properties at lambda, the contribution to the irradiances at lambda from Raman scattering is then estimated and subtracted from the total irradiances to obtain the elastically scattered irradiances. We then inverted the elastically scattered irradiances to find new estimates of a and b(b) using our original method [Appl. Opt. 37, 3886 (1998)]. The algorithm then operates iteratively: The new estimates are used with the Raman source function to derive a new estimate of the Raman contribution, etc. Sample results are provided that demonstrate the working of the algorithm and show that the absorption and scattering coefficients can be retrieved with accuracies similar to those in the absence of Raman scattering down to depths at which the light field is significantly perturbed by it, e.g., with approximately 90% of the upwelling light field originating from Raman scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.