Abstract

A novel platinum-based macrocycle, iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine (PtFeOCPc), was synthesised and characterised. The heterogeneous electron transfer and electrocatalytic properties of this functional material towards the oxidation of formic acid have been explored on a graphite electrode platform pre-modified with or without acid-functionalised multi-walled carbon nanotubes (MWCNTs). We prove that PtFeOCPc supported on a MWCNT platform (MWCNT–PtFeOCPc) exhibits enhanced electrochemical response in terms of (i) electron transfer towards outer-sphere redox probe, (ii) catalytic rate constant, and (iii) tolerance towards CO poisoning during formic acid oxidation. The results clearly suggest that the MWCNT–PtFeOCPc is a promising platform for potential application as an electrocatalyst for direct formic acid fuel cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call