Abstract

A novel iron(II) phthalocyanine covalently modified graphene (FePc-Gr) was synthesized by reduction of the product obtained through an amidation reaction between carboxyl-functionalized graphene oxide (CFGO) and iron(II) tetra-aminophthalocyanine (FeTAPc). The FePc-Gr hybird was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic properties of FePc-Gr toward the oxygen reduction reaction (ORR) were evaluated using cyclic voltammetry (CV) and linear sweep voltammetry methods. The peak potential of the ORR on the FePc-Gr catalyst was found to be about −0.12V vs. SCE in 0.1M NaOH solution, which was 180 and 360mV more positive than that on FeTAPc and bare GCE, respectively. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements revealed that the ORR mechanism was nearly via a direct four-electron pathway to water on FePc-Gr. The current still remained 83.5% of its initial after chronoamperometric test for 10,000s. Nevertheless, Pt/C catalyst only retained 40.5% of its initial current. The peak potential and peak current changed slightly when 3M methanol was introduced. So the FePc-Gr composite catalyst for ORR exhibited high activity, good stability and methanol-tolerance, which could be used as a promising Pt-free catalyst for ORR in alkaline direct methanol fuel cell (DMFC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call