Abstract

A novel radical-based approach for the iron-catalyzed selective cleavage of acetal-derived alkylsilyl peroxides, followed by the formation of a carbon-carbon bond is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the acetal moiety and the carbon electrophile. Mechanistic studies suggest that the present reaction proceeds through a free-radical process involving carbon radicals generated by the homolytic cleavage of a carbon-carbon bond within the acetal moiety. A synthetic application of this method to sugar-derived alkylsilyl peroxides is also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.