Abstract
SBA-15-supported iron catalysts with and without alkali metal salt modifications were studied for propylene oxidation by nitrous oxide. The reaction route could be dramatically changed from allylic oxidation to epoxidation by modification of the FeOx/SBA-15 catalyst with alkali metal salts. The KCl-1 wt % FeOx/SBA-15 (K/Fe = 5) catalyst exhibited the best catalytic performances for propylene epoxidation, over which ca. 50% propylene oxide selectivity could be gained at a 10% propylene conversion at 648 K. Characterizations with diffuse reflectance UV-Vis, XANES, and Raman spectroscopic techniques revealed that the modification with KCl increased the dispersion of the iron species and changed the local coordination of iron into a tetrahedral configuration on the inner surface of SBA-15. This tetrahedrally coordinated iron site, which was probably stabilized by potassium ions, was proposed to account for the epoxidation of propylene by nitrous oxide. At the same time, the reactivity of lattice oxygen was inhibited, and the acidity of the FeOx/SBA-15 was eliminated. These changes should also contribute to the increase in the selectivity to propylene oxide. The counteranions in the alkali metal salts exerted a significant influence on the catalytic behaviors probably via an electronic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.