Abstract

FeCl(3) in combination with t-BuOOt-Bu as an oxidant was found to be an efficient catalyst for oxidation of alkylamides to α-(tert-butoxy)alkylamides. FeCl(2) and CuCl showed, respectively, almost the same and slightly lower activities compared with FeCl(3) in the tert-butoxylation of N-phenylpyrrolidone (1a), whereas no tert-butoxylated product was obtained by use of Fe(OTf)(3), RuCl(3), or Zr(OTf)(4). FeCl(3) was found to be effective also as a catalyst for the Friedel-Crafts alkylation with thus obtained α-(tert-butoxy)alkylamides. The Friedel-Crafts alkylation proceeded smoothly also in the presence of a catalytic amount of Fe(OTf)(3), RuCl(3), or Zr(OTf)(4). In contrast, FeCl(2) and CuCl, which showed certain activity toward the tert-butoxylation, failed to promote the Friedel-Crafts alkylation. Among the transition metal complexes thus far examined, only FeCl(3) showed high catalytic activities for both the oxidation and the Friedel-Crafts alkylation. The bifunctionality of FeCl(3) was utilized for the oxidative coupling of alkylamides with arenes through a tandem reaction consisting of oxidation of alkylamides to α-(tert-butoxy)alkylamides and the following Friedel-Crafts alkylation. The FeCl(3)-catalyzed oxidative coupling is applicable to a wide variety of alkylamides and arenes, though a combination of FeCl(3) with Fe(OTf)(3) was found to be effective for the reaction of arenes with low nucleophilicity. A Fe(II)-Fe(III) catalytic cycle is concerned with the tert-butoxylation, whereas a Fe(III) complex as a Lewis acid catalyzes the Friedel-Crafts alkylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.