Abstract

Reverse osmosis (RO) does not effectively remove carcinogenic 1,4-dioxane and, consequently, this compound needs to be eliminated from RO-reclaimed water for potable reuse. This work analyzed the 1,4-dioxane mineralization on a solar-driven system using home-made catalysts with iron tungstate (wt%: 1–20%) supported on nano-γ-alumina. Characterization has been conducted using SEM-EDS, N2 adsorption-desorption, XRD, XPS, UV–vis spectra, PL, EIS and transient photocurrent analyses. The BET area of FeW/nAl5 catalyst was close to 200 m2 g−1. XRD and XPS analysis confirmed that iron tungstate was loaded on the support. Mineralization has been checked with catalyst concentration ranging 0.1–0.9 g L−1. More than 90% TOC removal was achieved, with no iron or tungsten leaching after 4 h reaction. Scavenging tests, ESR, ionic chromatography and UPLC-MS analysis confirms that •OH and O2•− radicals were responsible for 1,4-dioxane degradation. Iron promotes •OH formation and 1,4-dioxane photodegradation. Several ring-opening intermediates were identified, whereas condensation byproducts were detected in minor amounts. Based on byproduct identification, reaction pathway was postulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call