Abstract

<p>Polar regions are critical for future climate evolution, and they experience major environmental changes. A particular focus of biogeochemical investigations in these regions lies on iron (Fe). This element drives primary productivity and, thus, the uptake of atmospheric CO<sub>2</sub> in vast areas of the ocean. Due to the Fe-limitation of phytoplankton growth in the Southern Ocean, Antarctica is a key region for studying the change of iron fluxes as glaciers progressively melt away. The respective climate feedbacks can currently hardly be quantified because data availability is low, and iron transport and reaction pathways in Polar coastal and shelf areas are insufficiently understood. We show how novel stable Fe isotope techniques, in combination with other geochemical analyses, can be used to identify iron discharges from subglacial environments and how this will help us assessing short and long term impacts of glacier retreat on coastal ecosystems.</p><p>Stable Fe isotopes (δ<sup>56</sup>Fe) may be used to trace Fe sources and reactions, but respective data availability is low. In addition, there is a need to constrain δ<sup>56</sup>Fe endmembers for different types of sediments, environments, and biogeochemical processes.</p><p>δ<sup>56</sup>Fe data from pore waters and sequentially extracted solid Fe phases at two sites in Potter Cove (King George Island, Antarctica), a bay affected by fast glacier retreat, are presented. Close to the glacier front, sediments contain high amounts of easily reducible Fe oxides and show a dominance of ferruginous conditions compared to sediments close to the ice-free coast, where surficial oxic meltwater discharges and sulfate reduction dominates. We suggest that high amounts of reducible Fe oxides close to the glacier mainly derive from subglacial sources, where Fe liberation from comminuted material beneath the glacier is coupled to biogeochemical weathering. A strong argument for a subglacial source is the predominantly negative δ<sup>56</sup>Fe signature of reducible Fe oxides that remains constant throughout the ferruginous zone. In situ dissimilatory iron reduction (DIR) does not significantly alter the isotopic composition of the oxides. The composition of the easily reducible Fe fraction therefore suggests pre-depositional microbial cycling as it occurs in subglacial environments. Sediments influenced by oxic meltwater discharge show downcore trends towards positive δ<sup>56</sup>Fe signals in pore water and reactive Fe oxides, typical for in situ DIR as <sup>54</sup>Fe becomes less available with increasing depth.</p><p>We found that a quantification of benthic Fe fluxes and subglacial Fe discharges based on stable Fe isotope geochemistry will be complicated because (1) diagenetic processes vary strongly at short lateral distances and (2) the variability of δ<sup>56</sup>Fe in subglacial meltwater has not been sufficiently well investigated yet. However, isotope mass balance models that consider the current uncertainties could, in combination with an application of ancillary proxies, lead to a much better quantification of Fe inputs into polar marine waters than currently available. This would consequently allow a better assessment of the flux and fate of Fe originating from the Antarctic Ice Sheet.</p><p><strong>Henkel et al. (2018)</strong> Diagenetic iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. GCA 237, 320-338.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.