Abstract

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.