Abstract

Two N-1 type iron-sulfur clusters in NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) were potentiometrically resolved: one was titrated as a component with a midpoint oxidation-reduction potential of -335 mV at pH 8.0, and with an n-value equal to one; the other as an extremely low midpoint potential component (Em 8.0 less than -500 mV). These two clusters are tentatively assigned to N-1b and N-1a, respectively. Cluster N-1b is completely reducible with NADH and has a spin concentration of about 0.8/FMN. Its EPR spectrum can be simulated as a single rhombic component with principal g values of 2.019, 1.937, and 1.922, which correspond to the Center 1 reported earlier by Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974) J. Biol. Chem. 249, 1922-1927. At extremely low oxidation-reduction potentials (less than -450 mV), additional EPR signals emerge with apparent g values of gz = 2.03, gy = 1.95, and gx = 1.91, which we assign to cluster N-1a. It is difficult, however, to simulate the detailed spectral line shape of this component as a single rhombic component, suggesting some degree of protein modification or interaction with a neighboring oxidation-reduction component. EPR spectra of soluble NADH dehydrogenase, containing 5-6 g atoms of non-heme iron and 5-6 mol of acid-labile sulfide/mol of FMN, were examined. Signals from at least two iron-sulfur species could be distinguished in the NADH-reduced form: one of an N-1b type spectrum; the other of a spectrum with g values of 2.045, 1.95, and 1.87 (total of about 0.5 spin equivalents/FMN). This is the first example of an N-1 type signal detected in isolated soluble NADH dehydrogenase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call