Abstract

Porous silicon nanoparticles (pSiNPs) have gained attention from drug delivery systems (DDS) due to their biocompatibility, high drug-loading efficiency, and facile surface modification. To date, many surface chemistries of pSiNPs have been developed to maximize the merits and overcome the drawbacks of pSiNPs. In this work, we newly disclosed a formulation, iron-silicate-coated pSiNPs (Fe-pSiNPs-NCS), using the surface modification method with iron-silicate and 3-isothiocyanatopropyltriethoxysilane (TEPITC). Fe-pSiNPs-NCS demonstrated effective reactive-oxygen species (ROS) self-generation ability via a Fenton-like reaction of iron-silicate and in situ hydrogen peroxide (H2O2) generation of TEPITC on the surface of pSiNPs, resulting in excellent anticancer effect in U87MG cancer cells. Moreover, we confirmed that Fe-pSiNPs-NCS could be used as a drug delivery carrier as it was proven that anticancer drugs (doxorubicin, SN-38) were loaded into Fe-pSiNPs-NCS with high-loading efficiency. These findings could offer efficient strategies for developing nanotherapeutics in biomedical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call