Abstract

Simultaneous nitrification and denitrification (SND) has the advantage of energy saving and carbon demand reduction. Here, readily available low-cost iron scraps packing was added to an aerobic sludge system. This successfully enhanced the efficiency of total nitrogen removal from 37.7 ± 13.2 % to 62.7 ± 7.9 % over 2 days. While electrons from iron biocorrosion did not contribute to nitrate reduction, iron promoted heterotrophic denitrification. The iron scraps changed the spatial distribution of the microbial community, where more denitrification bacteria accumulated around the packing and higher denitrification capacity was noted. Metagenomic analysis of the sludge cultured in the presence of iron scraps for 2 days revealed that, with the exception of the enriched amoA/B/C gene expression, the abundance of other key nitrogen removal genes showed little variation. Furthermore, the structure of the microbial community was unchanged probably due to the relatively short culturing period. However, metatranscriptomic analysis indicated that iron increased the abundance of nitrifying bacteria (i.e. unclassified Nitrosomonas, Nitrosomonas sp. Is79A3 and Nitrospira defluvii) and promoted higher expression of nitrification genes. Notably, iron scraps packing decreased the abundance of the key denitrification bacteria Thauera sp. MZ1T from 52.92 to 7.58 %. The expression of napA/B also decreased, while expression of narG/H/I increased by 9 to 23 fold and a 2 to 3 fold over expression was noted for nirS, norB/C and nosZ in the presence of iron scraps. This suggested that aerobic denitrification was inhibited and anaerobic denitrification was promoted. This study has provided in-depth understanding of the influence of iron on SND to improve the application of iron-supported biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.