Abstract

In this study, a suite of Fe-rich biochars derived from Fenton-like treated digestate (Fe-BC) were fabricated under different pyrolysis temperatures (300, 500, and 800°C), which were firstly utilized as peroxymonosulfate (PMS) activators for promoting digestate dewaterability with wide applicability. Results showed that compared to the Fe-BC300/Fe-BC500 + PMS treatments, Fe-BC800 + PMS process performed superior digestate dewaterability in which specific resistance to filtration reduction and water content reduction improved by >12.5% and >130%, respectively, under the optimal conditions. Mechanistic results demonstrated that in Fe-BC800 + PMS system, HO• and SO4•- oxidation played a pivotal role on promoted digestate dewaterability, while HO• and 1O2 oxidation was dominated in Fe-BC300/Fe-BC500 + PMS treatments. Fe-BC800 containing higher Fe and CO contents could efficiently interact with PMS to generate numerous HO• and SO4•- via iron cycle. These highly reactive oxygen species proficiently reduced the hydrophilic biopolymers, protein molecules, and amino acids in extracellular polymeric substances, leading to remarkable decrease in particle size, hydrophilicity, adhesion, network strength, and bound water of digestate. Consequently, the flowability and dewaterability of digestate could be significantly enhanced. The cost-benefit result indicated the Fe-BC + PMS treatment possessed desirable reusability, applicability, and economic viability. Collectively, the Fe-BC + PMS is a high-performance and eco-friendly technique for digestate dewatering, which opens a new horizon towards a closed-loop of digestate reutilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call