Abstract

Excessive iron in aluminum melt produces needle-shaped beta-AlFeSi intermetallic compounds during solidification. The presence of beta-AlFeSi intermetallic compounds can be harmful in the extrusion process because of the high pressure. As a common process, those compounds change from the needle-shaped to the globular-shaped alpha-AlFeMnSi intermetallic compounds through the addition of manganese to the aluminum melt. Those phases settle down during the solidification process, and then such is cut. Note, however, that the efficiency of iron elimination is very low. Our previous study reported that EMS can help the alpha-AlFeMnSi intermetallic compounds form easier and faster and settle down at the bottom of the aluminum melt through the centrifugal force of EMS. To investigate the effect on the efficiency of iron elimination in aluminum melt scrap, EMS current, holding temperature, and time of melt as well as the ratio of manganese to iron were controlled. As a result of this study, lower holding temperature and longer holding time of aluminum melt make iron elimination in aluminum melt more efficient with induced EMS. The best efficiency of iron elimination in aluminum melt was 65.2%with EMS induced at 923k for 4 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.