Abstract

Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during growth in the infected host.

Highlights

  • Acinetobacter baumannii is a Gram-negative coccobacillus pathogen linked to severe nosocomial infections including pneumonia, bacteremia, urinary tract infections and necrotizing fasciitis [1, 2]

  • Flow cytometry analyses of samples obtained from A. baumannii ATCC 19606T, LUH 13000 or AYE cultures containing sheep erythrocytes showed that AYE was the only strain, of the three tested strains, to be significantly hemolytic (P < 0.05) to sheep erythrocytes, as compared to E. coli MG1655, which was used as a hemolysis-negative control (Fig 2C)

  • Flow cytometry analyses showed that ATCC 19606T, LUH 13000 and AYE were hemolytic to human erythrocytes as demonstrated by 41%, 23% and 41% reductions in the numbers of intact human erythrocytes, respectively, with only the hemolysis caused by ATCC 19606T and AYE being statistically different from the hemolysis-negative E. coli control (P < 0.001) (Fig 2C)

Read more

Summary

Introduction

Acinetobacter baumannii is a Gram-negative coccobacillus pathogen linked to severe nosocomial infections including pneumonia, bacteremia, urinary tract infections and necrotizing fasciitis [1, 2]. Reports have associated A. baumannii with wound infections acquired by combatants deployed to Iraq earning it the popularized name ‘Iraqibacter’ [4]. Treatment of A. baumannii infections is exceedingly difficult due to increasing multi-drug resistance and the limited understanding of its virulence factors, conditions that have a paramount impact on human health worldwide. While the mechanisms of antibiotic resistance associated with this emerging pathogen have been extensively studied, there is a troublesome paucity of literature reporting the molecular mechanisms of virulence associated with A. baumannii pathogenicity [5]. Among the more understood properties that make A. baumannii a successful pathogen is its versatility in acquiring iron [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.