Abstract

Iron is an essential trace element involved in a variety of biological mechanisms in the human body. Disturbances of iron homeostasis have been observed in several inflammatory and degenerative diseases, which have raised strong interest in non-invasive iron mapping techniques. Numerous MRI techniques have been proposed so far, mostly based on the field changes induced by the magnetic properties of iron. Each of these approaches has a specific sensitivity for iron and its microstructural environment. Quantitative susceptibility mapping is the latest development and provides a direct measure of bulk susceptibility. However, field changes induced by iron are not always directly related to the concentration of iron, but rather reflect the structure of iron compounds and its cellular distribution. This review provides an overview of the most relevant iron compounds in the human body, their magnetic properties and their cellular distribution. In addition, MRI methods based on direct or indirect susceptibility changes are presented and discussed with respect to technical aspects and clinical applicability. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.