Abstract
Programmed cell death contributes to neurological damage in ischemic stroke, especially during the reperfusion stage. Several cell death pathways have been tested preclinically and clinically, including ferroptosis, necroptosis, and apoptosis. However, the sequence and complex interplay between cell death pathways during ischemia/reperfusion remains under investigation. Here, we unbiasedly investigated cell death pathways during ischemia/reperfusion by utilizing RNA sequencing analysis and immunoblot assays and revealed that ferroptosis and necroptosis occurred early post-reperfusion, followed by apoptosis. Ferroptosis inhibitor Liproxstatin-1 effectively inhibited necroptosis during reperfusion, while the necroptosis inhibitor Necrostatin-1 suppressed protein expression consistent with ferroptosis activation. Protein–protein interaction analysis and iron chelation therapy by deferoxamine mesylate indicate that iron is capable of promoting both ferroptosis and necroptosis in middle cerebral artery occlusion/repression modeled mice. Treatment of cells with iron led to a disruption in redox balance with activated necroptosis and increased susceptibility to ferroptosis. Collectively, these data uncovered a complex interplay between ferroptosis and necroptosis during ischemic stroke and indicated that multiple programmed cell death pathways may be targeted co-currently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.