Abstract

A series of metalloporphyrin complexes were surveyed as catalysts for carbene insertion from ethyl diazoacetate into the N−H bonds of amines. Iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, was found to be an efficient catalyst for N−H insertion reactions with a variety of aliphatic and aromatic amines, with yields ranging from 68 to 97%. Primary amines were able to undergo a second insertion when another equiv of EDA was added by slow addition. N-Heterocyclic compounds were poor substrates, giving low yields or no N−H insertion products. Competition reactions and linear free energy relationships provided mechanistic insights for the insertion reaction. The relative rates for N−H insertion into para-substituted aniline derivatives correlated with Hammett σ+ parameters. Electron-donating groups enhanced the reaction, as indicated by the negative value of ρ (ρ = −0.66 ± 0.05, R2 = 0.93). These results are consistent with a rate-determining nucleophilic attack of the amine on an iron carbene complex. In ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.