Abstract

The novel nano-scale iron phthalocyanine oligomer/Fe3O4 (FePc/Fe3O4) hybrid microspheres were synthesized from iron phthalocyanine oligomer and FeCl3·6H2O via a solvent-thermal crystallization route. The morphology and structure of the hybrid microspheres were characterized by Fourier transform infrared spectrophotometer, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These results showed that the hybrids were monodisperse microspheres and the morphology can be adjusted by controlling pre-polymerization time. The saturation magnetization increased with increase in the pre-polymerization time, while the coercivities decreased. The FePc/Fe3O4 hybrid microspheres exhibited novel microwave electromagnetic properties: the dielectric loss was enhanced when the pre-polymerization time increased and a new microwave loss peak appeared at high frequency. The microwave absorbing properties enhanced with increase in the pre-polymerization time and a maximum reflection loss of −29.7dB was obtained at 11.7GHz with 6h of pre-polymerization time when the matching thickness was 3.0mm. The novel hybrid materials are believed to have potential applications as microwave absorbing materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call