Abstract

Photoredox catalysis of organic reactions driven by iron has attracted substantial attention throughout recent years, due to potential environmental and economic benefits. In this Perspective, three major strategies were identified that have been employed to date to achieve reactivities comparable to the successful noble metal photoredox catalysis: (1) Direct replacement of a noble metal center by iron in archetypal polypyridyl complexes, resulting in a metal-centered photofunctional state. (2) In situ generation of photoactive complexes by substrate coordination where the reactions are driven via intramolecular electron transfer involving charge-transfer states, for example, through visible-light-induced homolysis. (3) Improving the excited-state lifetimes and redox potentials of the charge-transfer states of iron complexes through new ligand design. We seek to give an overview and evaluation of recent developments in this rapidly growing field and, at the same time, provide an outlook on the future of iron-based photoredox catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.