Abstract

Carbon dioxide capture/release reactions using magnetite, Fe3O4, and hematite, Fe2O3, as sorbents were studied. Kinetics of mechanically activated chemical reactions between iron oxides and CO2 was investigated as a function of CO2 pressure and planetary ball mill process parameters. It was found that complete carbonation of iron oxides can be accomplished at room temperature and elevated CO2 pressure (10–30bar). Siderite calcination was studied in vacuum and argon atmospheres. FeCO3 can be decomposed at 367°C yielding magnetite, carbon and/or iron. This mixture can reversibly re-absorb carbon dioxide in multiple carbonation–calcination cycles. These results suggest that siderite or iron oxides are prospective and efficient reversible sorbents for CO2 capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call