Abstract

We here report a method for the facile and large scale preparation of lithium-ion battery anodes based on α-Fe 2O 3 (hematite) nanorods with different textural characteristics and surface composition. The method combines electrostatically driven self-assembly approaches with specific adsorption and magnetically easy to disrupt soft aggregates. Special emphasis has been set to correlate the textural characteristics (porosity) and surface composition (core, core–nanoshell and core–double nanoshells) of nanorods with their electrochemical response. Thus, we have shown that nanorods present a nanophase whose specific capacity strongly depends on the lithium transport distances (nanorods with slit-shape mesopores running along their long axis vs. non-porous or surface blocked nanorods). We have also shown that the capacity retention of this nanophase after several charge–discharge processes depends on maintaining the structural integrity of the nanorods. Essential for the success of this latter study has been the use of nanorods that offer a simple tool (oriented X-ray line broadening) to follow their electrochemical grinding. Our data suggest that α-Fe 2O 3 mesoporous nanorods could both operate at a voltage and retain a capacity similar to that of nanostructured lithium titanates anodes if actions are taken to prevent electrochemical grinding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.