Abstract

Nanostructured materials that have low tissue toxicity, multi-modal imaging capability and high photothermal conversion efficiency have great potential to enable image-guided near infrared (NIR) photothermal therapy (PTT). Here, we report a bifunctional nanoparticle (BFNP, ∼16 nm) comprised of a magnetic Fe3O4 core (∼9.1 nm) covered by a fluorescent carbon shell (∼3.4 nm) and prepared via a one-pot solvothermal synthesis method using ferrocene as the sole source. The BFNP exhibits excitation wavelength-tunable, upconverted and near-infrared (NIR) fluorescence property due to the presence of the carbon shell, and superparamagnetic behavior resulted from the Fe3O4 core. BFNPs demonstrate dual-modal imaging capacity both in vitro and in vivo with fluorescent imaging excited under a varying wavelength from 405 nm to 820 nm and with T2-weighted magnetic resonance imaging (r2 = 264.76 mM−1 s−1). More significantly, BFNPs absorb and convert NIR light to heat enabling photothermal therapy as demonstrated mice bearing C6 glioblastoma. These BFNPs show promise as an advanced nanoplatform to provide imaging guided photothermal therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.