Abstract

We report measurements of dissolvable and particulate iron, particulate Al, nutrients and phytoplankton biomass in surface waters during the termination of one upwelling event and the initiation of a second event in August 2000. These events occurred in the area of the Año Nuevo upwelling center off the coast of central California. The first event was observed after ∼8 days of continuous upwelling favorable winds, while the second event was observed through the onset of upwelling favorable winds to wind reversals ∼3 days later. Coincident with the upwelling signatures of low temperature and high salinity were significantly elevated concentrations of nitrate and silicate with average concentrations greater than 15 and 20 μM, respectively, during both upwelling events. Dissolvable Fe concentrations (TD-Fe) were significantly higher in the second event, 6.5 versus 1.2 nM Fe found in the first event. Nitrate was reduced by ∼5 μM day −1 within this second upwelled plume as compared to a drawdown of ∼2 μM day −1 within the first plume. Silicate was reduced in a ratio of 1.2 mol Si:mol NO 3 in the high Fe waters of the second plume as compared to a ratio of 2.2 in the lower Fe waters of the first plume. The observed differences in nutrient utilization are consistent with some degree of iron limitation. The area of increased dissolvable Fe in the second upwelling event was coincident with elevated particulate Fe concentrations, indicating the particulate pool as a possible source of the observed increase in TD-Fe. The elevated particulate Fe in surface waters was a result of resuspended sediments in the bottom boundary layer (BBL) of the shallow shelf being transported to the surface during upwelling. Particulate (and dissolvable) iron concentrations were significantly reduced as upwelling continued. This was most probably due to a decoupling of the BBL from upwelled source waters as the upwelling front moved offshore and/or reduced turbulence in the BBL as upwelling continued. The observed reduction in both particulate and dissolvable Fe, as upwelling continued to deliver macronutrients to surface waters, may result in varying levels of Fe limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.