Abstract

In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp 3 -hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.