Abstract

In this study, antioxidant and antimicrobial activities of basil (Ocimum basilicum L.) essential oil (EO) in response to different Fe sources (Fe-arginine, Fe-glycine, and Fe-histidine nano-complexes and Fe-EDDHA) were examined. EO samples were predominantly constituted by the phenylpropanoid methyl chavicol (53–89.5%). Application of Fe nano-complexes significantly increased the occurrence and concentration of sesquiterpenes, while decreased the content of oxygenated monoterpenes. Antioxidant activity of basil EOs was evaluated using free radical 2,2-diphenyl-1-picrylhydrazyl, Nitric oxide, H2O2 and Thiobarbituric acid reactive substances scavenging assays, and in all assays the highest and the lowest activities were recorded in basils supplied with Fe-histidine nano-complex (1.02, 1.62, 2.21, 3.22 mg mL-1) and control (3.89, 4.89, 5.52, 6.79 mg mL-1), respectively. Fe-histidine nano-complex was the most effective treatment to inhibit fungal (C. albicans: 0.058 mg mL-1; A. niger: 0.066 mg mL-1), Gram-negative (E. coli: 0.181 mg mL-1; S. typhimurium: 0.163 mg mL-1) and Gram-positive (B. subtilis: 0.033 mg mL-1; S. aureus: 0.002 mg mL-1) growth. In conclusion, application of iron nano-complexes significantly altered biological and pharmacological characteristics of basil EOs. Our results are quite encouraging since EOs exhibited potent antioxidant effect and antimicrobial activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.