Abstract
Iron deficiency in children is associated with a number of neural defects including hypomyelination. It has been hypothesized by others that this hypomyelination is due to a failure in myelin production. Other possibilities include failure in the generation of oligodendrocytes from their precursor cells or an interruption in oligodendrocyte maturation. These hypotheses are based on the observations that there is a peak in brain iron uptake in vivo that coincides with the period of greatest myelination and that a shortage of iron leads to myelination deficiency. We now demonstrate that iron availability modulates the generation of oligodendrocytes from tripotential-glial restricted precursor (GRP) cells isolated from the embryonic day 13.5 rat spinal cord. In contrast, we found no effects of iron on oligodendrocyte maturation or survival in vitro, nor did we find that increasing iron availability above basal levels increases oligodendrocyte generation from bipotential oligodendrocyte-type-2 astrocyte/oligodendrocyte precursor cells (O-2A/OPCs). Our results raise the possibility that iron may affect oligodendrocyte development at stages during early embryogenesis rather than during later development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.