Abstract

Fast methods to estimate iron losses of the permanent magnet traction motor during the drive cycle of the electrical vehicle are compared. The methods use the iron loss information calculated by a finite-element analysis as a function of rotational speed both at no load and with a short-circuited stator to take into account the variable frequency and field weakening of the traction motor. The effect of iron losses on the optimal current components, providing the maximum efficiency, is studied. Several methods yield a good accuracy even based on the no-load iron loss only, but the accuracy can be improved especially in deep field weakening by including the short-circuit iron loss information in the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call