Abstract

In this paper, the authors investigate the iron loss of interior permanent magnet motors driven by pulsewidth modulation (PWM) inverters from both results of the experiments and the finite-element analysis. In the analysis, the iron loss of the motor is decomposed into several components due to their origins, for instance, the fundamental field, carrier of the PWM inverter, slot ripples, and harmonic magnetomotive forces of the permanent magnet in order to clarify the main loss factors. The Fourier transformation and the finite-element method considering the carrier harmonics are applied to this calculation. The calculated iron loss is compared with the measurement at each driving condition. The measured and the calculated results agree well. It is clarified that the iron loss caused by the carrier of the PWM inverter is the largest component at low-speed condition under the maximum torque control, whereas the loss caused by the harmonic magnetomotive forces of the permanent magnet remarkably increase at high-speed condition under the flux-weakening control

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.