Abstract

Nickel-iron based hydr(oxy)oxides have been well recognized as one of the best oxygen-evolving catalysts in alkaline water electrolysis. A crucial problem, however, is that iron leakage during prolonged operation would lead to the oxygen evolution reaction (OER) deactivation over time, especially under large current densities. Here, the NiFe-based Prussian blue analogue (PBA) is designed as a structure-flexible precursor for navigating an electrochemical self-reconstruction (ECSR) with Fe cation compensation to fabricate a highly active hydr(oxy)oxide (NiFeOx Hy ) catalyst stabilized with NiFe synergic active sites. The generated NiFeOx Hy catalyst exhibits the low overpotentials of 302 and 313mV required to afford large current densities of 500 and 1000mA cm-2 , respectively. Moreover, its robust stability over 500h at 500mA cm-2 stands out among the NiFe-based OER catalysts reported previously. Various in/ex situ studies indicate that the Fe fixation by dynamic reconstruction process can reinforce the Fe-activated effect on the OER amenable to the industrial-level large current conditions against the Fe leakage. This work opens up a feasible strategy to design highly active and durable catalysts via thermodynamically self-adaptive reconstruction engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.