Abstract

The effect of continental weathering on the iron isotope compositions of natural materials is investigated. Unweathered igneous rocks, pelagic clay, and dust fall within the range δ 56Fe=0±0.3‰. Rivers with large suspended loads also have δ 56Fe values near zero. Dilute streams have δ 56Fe values that trend towards lower δ 56Fe (∼−1) suggesting that dissolved riverine iron is isotopically light relative to igneous rocks. Bulk soil and soil leaches display systematically different δ 56Fe profiles, indicating that isotopically distinct Fe pools are generated during pedogenesis. Nannofossil ooze, which contains Fe scavenged from the ocean water column, has δ 56Fe≈0, but is consistent with seawater dissolved Fe having negative δ 56Fe. It is inferred that continental weathering under modern oxidizing Earth surface conditions preferentially releases dissolved Fe with negative δ 56Fe, which is transported in rivers to the ocean. A preliminary analysis of the marine Fe budget suggests that riverine Fe has a substantial role in determining the δ 56Fe of both the modern and ancient oceans, but other inputs, particularly that from diagenesis of marine sediments, may also be important. Since the chemical pathways of Fe processing during weathering are dependent on oxidation state and biological activity, Fe isotopes may prove useful for detecting changes in these parameters in the geologic past.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call