Abstract

Colloids have been recognized as key vectors of pollutants in aqueous environment. Amongst them, those formed by iron (Fe) and organic matter (OM) are of major importance due to their ubiquity in the surface environment and strong affinity for metals. In the recent years, Fe stable isotopes have been increasingly used to elucidate the sources and biogeochemical cycling of Fe in Earth's surface environments. In this study, we aim to elucidate (i) the possible Fe isotopic signature resulting from the Fe/OM colloid formation and (ii) the mechanisms involved in the development of such isotopic signature. For this purpose, Fe-OM associations were synthesized through binding and titration experiments. Various pH levels were used in order to study the isotope behavior of Fe occurring as free species at pH 1, as Fe-OM complexes at pH 2 and as mixed Fe-oxyhydroxide/OM nanoaggregates or particles at pH 6.5. Organic matter-free, Fe-free and OM membrane-deposition experiments were also performed. These suspensions were (ultra)filtered at 0.2 µm, 30 kDa and 5 kDa to evidence the possible Fe isotope fractionation between fractions. This protocol allowed also testing the potential of (ultra)filtration techniques to generate isotope fractionation. The results provided evidence that abiotic Fe precipitation, (ultra)filtration techniques and OM deposition were not able to produce significant Fe isotope fractionation under the experimental conditions. However, at circum-neutral pH, the Fe-OM binding and titration experiments displayed a significant enrichment of heavy Fe isotopes in the 30 kDa and 30 kDa and 5kDa - <5kDa = -0.23 ± 0.08‰ suggesting that Fe heavy isotopes are preferentially bound to small humic OM molecules in the form of Fe monomers or small clusters. This study highlights the importance of organic matter for metals’ isotopic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.