Abstract
Threohydroxyaspartate (THA)-induced glutamate excitotoxicity in organotypic culture of rat spinal cord is a well-known model of motor neuron degeneration. THA causes accumulation of synaptic glutamate and over stimulation of the postsynaptic receptor by inhibiting glutamate uptake. This model has also been used to identify agents that inhibit glutamate excitotoxicity by increasing the expression of glutamate transporter. We now show that THA also increases iron level in rat spinal cord tissue, with concomitant modulation of key iron transport and storage proteins, including transferrin receptor, divalent metal-ion transporter 1 and ferritin. More significantly, iron chelator deferoxamine (DFO) was able to completely prevent THA-induced motor neuron degeneration. The protective effect of DFO did not involve enhancing glutamate uptake. These data provide new mechanistic insight into THA-induced glutamate excitotoxicity and suggest that blocking THA-induced iron rise alone may be sufficient for prevention of glutamate excitotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.