Abstract

Fe-FSM-16 and Fe-containing mesoporous materials (Fe-JLU-15) prepared by using semifluorinated surfactant as a template, have been synthesized by microwave-hydrothermal (M-H) process and characterized by several spectroscopic techniques. The catalytic activity of these materials was tested for the phenol hydroxylation and wet phenol oxidation with H2O2 under mild reaction conditions. The effect of pH, H2O2/PhOH molar ratio and stability of the catalyst on the oxidation process was also investigated. Phenol oxidation and H2O2 decomposition show that the Fe-JLU-15 is more active than Fe-FSM-16 and more stable in aqueous solution. The total amount of dissolved iron is less than 5 wt% of the iron initially contained in the catalyst. In phenol hydroxylation, these two solids can effectively catalyze the phenol hydroxylation. Catechol and hydroquinone were observed as the major products, with a difference in the product distribution for these solids. The Fe-JLU-15 has a high selectivity for catechol (63.5 % phenol conversion, CAT/HQ = 2.7) while the Fe-FSM-16 shows a high selectivity for hydroquinone (56.8 % phenol conversion, CAT/HQ < 1) under the same reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call