Abstract

How does iron enter enterocytes? Ablating SLC11A2, the gene for the divalent metal ion transporter DMT1, supports evidence from the Belgrade rat and mk mouse models establishing DMT1 as the primary mechanism serving apical uptake of nonheme iron. DMT1 harnesses the energy from the proton electrochemical potential gradient to drive active transport of Fe(2+) (and perhaps Mn(2+) and other metal ions) into enterocytes. Fe(III) must first be reduced by ascorbic acid and surface ferrireductases. Among these is duodenal cytochrome B (DcytB), but lack of an obvious phenotype in DcytB (Cybrd1) knockout mice suggests ferrireductase redundancy. Our understanding of heme absorption has lagged, but the time is ripe for gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.