Abstract

Aerobic alcohol oxidations catalyzed by transition metal salts and aminoxyls are prominent examples of cooperative catalysis. Cu/aminoxyl catalysts have been studied previously and feature "integrated cooperativity", in which CuII and the aminoxyl participate together to mediate alcohol oxidation. Here we investigate a complementary Fe/aminoxyl catalyst system and provide evidence for "serial cooperativity", involving a redox cascade wherein the alcohol is oxidized by an in situ-generated oxoammonium species, which is directly detected in the catalytic reaction mixture by cyclic step chronoamperometry. The mechanistic difference between the Cu- and Fe-based catalysts arises from the use iron(III) nitrate, which initiates a NOx-based redox cycle for oxidation of aminoxyl/hydroxylamine to oxoammonium. The different mechanisms for the Cu- and Fe-based catalyst systems are manifested in different alcohol oxidation chemoselectivity and functional group compatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call